Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones.

نویسندگان

  • Andrei Laszlo
  • Ilona Fleischer
چکیده

Heat is one of the most potent radiosensitizers known. Several randomized trials have shown that hyperthermia is a good adjuvant for radiotherapy at several different cancer sites. However, the mechanism(s) involved in the interaction of heat and radiation that lead to radiosensitization remain to be elucidated. In this report, we have determined that heat induces perturbations in some of the earliest events in the cellular response to DNA damage induced by ionizing radiation. We studied the effect of heat on the formation of complexes containing gamma-H2AX/MDC1/53BP1 in heated-irradiated cells. We found that the formation of this complex was delayed in heated-irradiated cells, in a heat but not radiation dose-dependent manner. The length of the heat-induced delay of complex formation was attenuated in thermotolerant and heat radiosensitization-resistant cells. The length of the delay of gamma-H2AX/MDC1/53BP1 complex formation correlated with the magnitude of heat radiosensitization and was modulated by the molecular chaperone Hsc70. Heat radiosensitization was attenuated in 53BP1-null cells, implying that the delay of the formation of the gamma-H2AX/MDC1/53BP1 complex plays a role in heat radiosensitization. Heat also induced a delay of events in the DNA damage response that are downstream from 53BP1. Our results support the notion that heat-induced perturbations in the earliest events of the cellular response to ionizing radiation-induced DNA damage play a role in heat radiosensitization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-35: Over-Expression of XRCC1 As Potential Biomarker for Poor Prognosis in Human Preimplantation Embryos: Selection by Study of 84 Genes Involved in DNA Damage Signaling Pathways

Background: Chromosome abnormalities are associated with poor morphology and development in human preimplantation embryos, all together lead to poor outcomes. This study aimed to explore altered expression of DNA damage pathways in “poor morphological and development embryos with sever aneuploidies”. Materials and Methods: Surplus day-4 embryos of PGD cases were pooled in two groups: Poor progn...

متن کامل

Invited review: Interplay between molecular chaperones and signaling pathways in survival of heat shock.

Heat shock of mammalian cells causes protein damage and activates a number of signaling pathways. Some of these pathways enhance the ability of cells to survive heat shock, e.g., induction of molecular chaperones [heat shock protein (HSP) HSP72 and HSP27], activation of the protein kinases extracellular signal-regulated kinase and Akt, and phosphorylation of HSP27. On the other hand, heat shock...

متن کامل

Modulation of Some Insulin Signaling Genes Due to Prenatal Rice Consumption

Objective: A clinically observable metabolic disorder often takes its root from modulation of transcriptional factors which in turn are responsible for perturbed protein expressions and their sequelae. Perinatal perturbations due to chronic prenatal exposure to a certain type of rice could predispose parents exposed to such ‘insult’ and their subsequent offsprings to metabolic diseases. Materi...

متن کامل

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 69 5  شماره 

صفحات  -

تاریخ انتشار 2009